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Abstract

An influential account of neuronal responses in primary visual cortex is the normalized

energy model. This model is often implemented as a multi-stage computation. The first

stage is linear filtering. The second stage is the extraction of contrast energy, whereby a

complex cell computes the squared and summed outputs of a pair of the linear filters in

quadrature phase. The third stage is normalization, in which a local population of complex

cells mutually inhibit one another. Because the population includes cells tuned to a range of

orientations and spatial frequencies, the result is that the responses are effectively normal-

ized by the local stimulus contrast. Here, using evidence from human functional MRI, we

show that the classical model fails to account for the relative responses to two classes of sti-

muli: straight, parallel, band-passed contours (gratings), and curved, band-passed contours

(snakes). The snakes elicit fMRI responses that are about twice as large as the gratings, yet

a traditional divisive normalization model predicts responses that are about the same. Moti-

vated by these observations and others from the literature, we implement a divisive normali-

zation model in which cells matched in orientation tuning (“tuned normalization”)

preferentially inhibit each other. We first show that this model accounts for differential

responses to these two classes of stimuli. We then show that the model successfully gener-

alizes to other band-pass textures, both in V1 and in extrastriate cortex (V2 and V3). We

conclude that even in primary visual cortex, complex features of images such as the degree

of heterogeneity, can have large effects on neural responses.

Author summary

How does the nervous system transform images into patterns of neural responses? A test

of our understanding of this process is whether we can implement a computational model

that takes digital images as input and accurately predicts responses in some part of the

visual pathway. A widely used model of the transformation from image to neural response

in primary visual cortex is the normalized energy model, in which image contrast drives

neural activity, but the activity is self-limited because neural responses inhibit one another

(“normalization”). We used functional MRI to measure the responses of human visual
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cortex while participants viewed a variety of images, and asked how accurately a normal-

ized energy model could predict these responses. We find that if the model assumes that

all neurons mutually inhibit one another (“untuned normalization”) it is not accurate, but

if it assumes that only neurons tuned to similar image features inhibit one another

(“tuned normalization”), predictions are much more accurate. We speculate that feature-

tuned normalization helps the brain extract meaningful information about higher-order

image statistics that are prevalent in many natural images.

1. Introduction

Primary visual cortex (“V1”) has served as a testing ground for studying physiology, anatomy,

brain development, and neuroimaging. There has been considerable success in developing

general model forms that capture many of the encoding properties of V1 neurons reasonably

well over a range of stimulus conditions, including the normalized energy model of V1 com-

plex cells [1]. This type of model, like many others [reviewed in chapter 6 of 2,3], includes a

linear filter as the first stage, i.e., a weighted sum of the stimulus intensity over space and time.

In a second stage, the outputs of the filter are squared and summed across nearby spatial loca-

tions or across phase [4–6]. If the outputs are summed across a pair of linear filters tuned to

the same frequency, orientation, and location, but differing in phase by 90 deg, it is called an

energy model. In the third stage, the response of each neuron is normalized (divisively sup-

pressed) by the second-stage outputs of the nearby neural population [1,7]. This effectively

adjusts the gain based on the contrast energy in the image patch. There is substantial evidence

that each of these three operations–linear filtering, energy, and normalization–contributes to

the responses of V1 neurons [reviewed by 8].

The normalized contrast energy model, though initially developed to explain the outputs of

single neurons, has also been successfully applied to functional MRI data in human visual cor-

tex. First, a contrast energy model without normalization, applied to voxels in V1, V2, and V3,

was used to predict BOLD responses (encoding) and to infer the viewed images from the

BOLD responses (decoding) [9]. Subsequent work showed that incorporating a normaliza-

tion-like non-linearity improved model accuracy when testing stimuli that varied substantially

in size [10] or pattern [11], and that normalization could account for the BOLD contrast

response function for gratings with and without masking stimuli at other orientations [12].

These models have also shown good prediction accuracy for similar stimulus sets used in

human intracranial electrode recordings of visual cortex [13,14].

The normalized contrast energy model, although successful at accounting for responses to a

range of stimuli, nonetheless fails to explain some phenomena. There is some evidence that the

standard model fit to artificial stimuli generalizes poorly to natural images [15–17] [but see

also 18]. Even testing with simple patterns, early studies of V1 and extrastriate electrophysiol-

ogy showed that some cells had tuning properties differing from simple or complex cells, called

“hypercomplex” cells, many of which were associated with “end-stopping” [19,20]. Recent V1

two-photon calcium recordings included a large stimulus set and found that many cells, with

or without end-stopping, were surprisingly sparsely tuned, often sensitive to complex patterns

such as crosses or composite features [21]. It is unlikely that the standard energy model would

predict the kind of tuning they observed, although they did not fit this model to their data.

Other studies with single-unit electrophysiology found that a normalization model could be

successful but only if the normalization was flexible, such that its strength depended on statisti-

cal dependencies in the image [22]. In closed-loop experiments in which models are used in
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real time to find the optimal stimulus for mouse V1 cells, the most effective stimuli were often

quite complex, differing from simple Gabor patterns [23]. In human fMRI studies, the

responses to natural/complex images in V1 also appear to be influenced by statistical depen-

dencies and image context [24,25], factors unlikely to influence the predictions of the normal-

ized energy model. Even in relatively simple artificial images with a fixed amount of total

contrast energy, the BOLD response is lower when there is a single orientation compared to

when there are two divergent orientations [26,27].

In visual areas beyond V1, the normalized energy model is expected to be incomplete, as cir-

cuits in these areas contribute new computations. There are no widely adopted encoding models

for these areas analogous to the normalized energy model for V1, but there has been some success

in modeling patterns in the extrastriate responses by incorporating higher-order statistical depen-

dencies of the modeled V1 outputs [28–30], higher-order statistical dependencies learned from

natural image statistics [31], or sensitivity to second-order contrast [11]. There has also been prog-

ress in predicting V4 and IT responses from deep convolutional networks [32–34].

Here, using evidence from human functional MRI, we show that the classical normalized

energy model fails to account for the relative responses to two classes of stimuli: straight, paral-

lel, band-passed contours (gratings), and curved, band-passed contours (snakes) (Fig 1). The

snakes elicit fMRI responses that are about twice as large as the gratings, yet traditional energy

models, including normalized energy models, predict responses that are about the same. This

is a large model failure which, in conjunction with the other failures of the simple normaliza-

tion model described above, motivated us to implement a model in which the normalization is

tuned, meaning that the normalization pool for a given neural channel has the same orienta-

tion tuning as the channel being normalized. We also developed and implemented a computa-

tional model that achieves tuned normalization in a different way, in which responses are

normalized not by the sum of the contrast energy, but by the anisotropy (standard deviation)

Fig 1. Example straight-line and curved-line stimuli from our experiments. We observe that in human V1, V2, and V3, stimuli with long straight lines

(gratings) reliably evoke a smaller fMRI response than similar stimuli with curved lines.

https://doi.org/10.1371/journal.pcbi.1011704.g001
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in contrast energy computed across orientation channels. Both models account for the differ-

ences in responses to snakes vs gratings, supporting the proposal that normalization depends

on the spatial arrangement of image features, and not just the total amount of contrast energy.

2. Results

2.1. fMRI BOLD responses to snakes are larger than to gratings

We first consider an observation about fMRI responses to two classes of simple, grayscale,

band-passed, static images. For one class, the stimuli contain several curved contours, which

we refer to throughout as snakes. For the other class, the stimuli contain several straight, paral-

lel contours, which we refer to as gratings. We refer to these classes together as the target sti-
muli. The surprising observation is that for V1, V2 and V3, the fMRI responses are

substantially larger for the snakes than for gratings (Fig 2). The responses to the gratings, irre-

spective of density, are only about as high as the lowest response to the snakes. We confirm

this pattern with three additional fMRI data sets, which also show larger responses to snakes

than gratings in V1, V2 and V3 (Figs A1-A4 in S5 Appendix).

To check whether this pattern of results is specific to fMRI, we replot published intracranial

data from Hermes et al., 2019 [13], in which human subjects with ECoG recordings viewed a sim-

ilar set of stimuli (Fig 2, bottom panel). The ECoG data, plotted as the percent increase in broad-

band power over baseline, show the same general effect as the fMRI data: The responses to snakes

are much larger than to gratings, irrespective of texture density, indicating that the effect is not

limited to the fMRI BOLD response. (See Hermes et al., 2019 [13] for methodological details.)

In the next four sections, we describe the four models that are fit to the data. For tractability,

we fit each model’s parameters to the aggregate (average) data within a visual area, rather than

to each voxel individually. All the stimuli are texture-like, meaning that they have similar prop-

erties across the whole image aperture, and for each stimulus class, nine different exemplars

were shown per 3-s trial. The different exemplars have the same higher-order statistics but vary

in their precise spatial distributions. Hence, model variables, such as contrast energy, would

have similar values for spatially localized portions of the image (as one would compute for an

individual voxel) as for the whole image (as we compute to model the aggregate response of a

visual area). For this reason, we did not include model parameters for the spatial location or spa-

tial extent of the receptive fields for individual voxels. We first describe models fit to the target

stimuli. We then summarize fits to the larger set of stimuli viewed by the subjects.

All four models consist of three components, filtering, spatial pooling, and a power-law nonline-
arity. In the filtering stage, we computed the contrast energy of the stimuli at 8 orientations and 4

spatial frequencies (see Methods for details). Although stimuli were designed to have power con-

centrated close to 3 cycles per degree, there is some spillover to lower and higher frequencies,

which is why we use multiple spatial frequency bands in our models. The spatial pooling stage

pools the contrast energy to yield a total contrast energy. In some models, the pooling stage also

includes divisive normalization. The output of the pooling is a scalar, which is then passed through

a power-law nonlinearity to predict BOLD amplitude in units of percent signal change. The

power-law nonlinearity achieves compressive spatial summation [10]. All models have the same fil-

tering (first stage) and output non-linearity (third stage). They differ in the spatial pooling stage.

2.2. The larger response to snakes is not captured by a simple contrast

energy model

A standard contrast energymodel pools the contrast energy by simply summing it across

space, orientations, and spatial frequencies to give a total contrast energy. It predicts that
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Fig 2. FMRI responses are larger for curved patterns than for straight patterns. The mean fMRI responses within a

visual area are plotted for V1, V2, and V3 in Data set 2 of Table A in S1 Appendix. For both curved stimuli (snakes,

dark bars) and straight stimuli (gratings, light bars), data are plotted in order of increasing texture density from left to

right. Examples of the 5 densities are shown above. Error bars are the standard deviation of the mean, bootstrapped

across fMRI runs. Responses are larger for the snakes than gratings. The same effect is also observed for Data sets 1, 3
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responses should increase with both stimulus contrast and with density of the pattern. This

model does not predict a larger response to the snakes than to gratings, contrary to the data

(Fig 3). In fact, the cross-validated variance explained is low (V1, V2) or even negative (V3) in

the example data, meaning that the model prediction is less accurate than it would have been if

it simply predicted the mean response across all stimuli. (The data are cross-validated, which is

why the variance explained can be negative). In short, the contrast energy model provides a

poor fit to the fMRI data in V1-V3 for these classes of stimuli. It is also a poor fit to the target

stimuli in the other three data sets (Table A in S3 Appendix and Fig A1 in S5 Appendix).

This does not mean that contrast energy models are always poor fits to fMRI responses in

V1-V3. For example, when stimuli vary in how contrast energy is distributed across space, a

contrast energy model can capture a lot of the variance in the responses across images, as

shown by Kay et al., 2013 [9].

2.3. The larger response to snakes is not captured by an untuned

normalization model

We then add divisive normalization to the model. After computing contrast energy, we nor-

malize the outputs by dividing the contrast energy at each pixel by the contrast energy of a nor-

malization pool (Fig 4, upper panel). The normalization pool includes nearby locations, all

spatial frequencies, and all orientations, giving it the name untuned normalization model (Fig

4, lower left panel).

The untuned normalization model and the contrast energy model make similar predictions

and explain a similar proportion of the variance in the data. The normalization model results

in more saturation at high contrast, as expected from divisive normalization [7]. This is espe-

cially evident in V2 and V3 at the highest stimulus contrast. The reason that the normalization

model and the contrast energy model have a similar overall pattern of predictions is that the

power law output nonlinearity, included in all models, can partially mimic the effects of nor-

malization [10, section “Relationship to Divisive Normalization”].

Like the contrast energy model, the untuned normalization model predicts a similar BOLD

amplitude for snakes and gratings, thereby failing to account for the data (Fig 5, upper panel).

The model is not sensitive to heterogeneity across orientations because the normalization pool

equally weights all orientation channels. Therefore, the output does not depend on whether

the contrast energy is concentrated in one orientation channel, as in the gratings, or spread

across many channels, as in the snakes. The untuned normalization model’s failure to account

for the greater response to snakes is reflected by low variance explained for the target stimuli

in each of the four data sets (Table A in S3 Appendix and Fig A2 in S5 Appendix).

2.4. The larger response to snakes is captured by an orientation-tuned

normalization model

The untuned normalization model implements a surround suppression that includes energy at

all orientations. Findings from electrophysiology [35–39], psychophysics [38,40–42], neuroim-

aging [26,27,43–45], and theory [46], however, suggest that surround suppression is orienta-

tion-tuned. For example, Cavanaugh, Bair, and Movshon, 2002 [35] reported that the response

of a neuron to a stimulus at its preferred orientation in its receptive field is suppressed more

and 4 of Table A in S1 Appendix (Fig A in S5 Appendix). Bottom panel: For comparison, we replot data from

intracranial recordings (ECoG) from Hermes et al 2019 [13], which also show larger responses for snakes than for

gratings. The full set of stimuli is shown in S2 Appendix. Data plotted from the function s4_visualize(’figure 2’) in the

GitHub code repository.

https://doi.org/10.1371/journal.pcbi.1011704.g002
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when the surrounding region contains contrast at the same orientation compared to different

orientations. Because our grating stimuli have contrast energy concentrated at a single orienta-

tion, and the snake stimuli do not, one might surmise that an orientation-tuned normalization
model would show greater suppression for the gratings, where the RF centers and surrounds

will have matched orientations, than for the snakes, where the orientations are more likely to

differ between center and surround. If so, this could then account for our observed effect.

The untuned normalization model is the same as the tuned model except for one difference:

At each pixel in the oriented contrast energy images, the tuned model normalizes the contrast
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https://doi.org/10.1371/journal.pcbi.1011704.g003
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energy across nearby locations only at the preferred orientation (orientation-tuned surround)

(Fig 4, lower right panel, diagonals). Within a single location (i.e., at each pixel), the normali-

zation is untuned (off-diagonals in the same panel), also called cross-orientation suppression

[47].

The orientation-tuned normalization model captures the large and systematic differences

in response amplitude between gratings and snakes (Fig 5, lower panel). In the example data

set, the BOLD amplitude and the orientation-tuned normalization model predictions for the

gratings are about half of those to the snakes, for both the density and contrast manipulations,

and for all three visual areas. In addition to capturing this difference in the means between the

two stimulus classes, the model also captures the difference in slope. As the density or contrast

increases, the model predicts steeper slopes for snakes than gratings. These patterns in the
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Fig 4. Two divisive normalization models. (A) Schematic of divisive normalization models. (B) The weights used to calculate normalization for the untuned

(left) and tuned (right) models, plotted using the function s4_visualize(’figure 4’) in the code repository.

https://doi.org/10.1371/journal.pcbi.1011704.g004
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model fits are found across the four data sets (Fig A3 in S5 Appendix). The orientation-tuned

normalization model is more accurate than the previous two models in all cases (Table A in

S3 Appendix, four data sets and three ROIs). This result holds up for different size surrounds–

what mattered was whether the surround was tuned or not tuned, not its size. The indifference

to the size of the surround almost certainly reflects the properties of the stimulus set, not neu-

ral tuning: the stimuli are all textures, with similar properties across the image. Had the stimuli

varied systematically across location, the size of the surround would likely have had a large

effect on model accuracy. Note that the data sets sometimes show a negative slope with

increasing density (e.g., V3, gratings varying in density). The model is unable to capture this

effect. The study in which these sparse stimuli were first used [11] showed that a second-order

contrast model could account for the decreased response with increasing sparsity, as the
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https://doi.org/10.1371/journal.pcbi.1011704.g005
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sparser stimuli have more second-order contrast. It is possible that the orientation-tuned nor-

malization model would also be able to do so if it included spatial receptive fields per voxel

that were small relative to the image.

2.5. Normalization by orientation anisotropy

The large advantage in prediction accuracy of the tuned over the untuned normalization

model supports the idea that suppression is feature-specific. As with any model, we chose a

specific instantiation of a more general idea, namely feature-specific suppression. The specific

instantiation entailed a minimal change from the untuned normalization model, requiring

only a change in normalization weights, and builds on the tradition of feedforward, filter-

based models. Feature-specific tuning can also be implemented in other ways, for example

based on more abstract ideas like predictability or redundancy in the image. There is some evi-

dence for models like these [22,48]. We implemented a second method of achieving orienta-

tion-tuned normalization, in which normalization was proportional to orientation anisotropy
(Fig 6, Normalization by orientation anisotropy, “NOA”). Normalization in this model is most

pronounced when an image patch has a single orientation, without a specification in terms of

a match between center and surround (See 3.3 What is the tuning in orientation-tuned normal-
ization?). Specifically, in the normalization by orientation anisotropy model, the contrast

energy is normalized by the standard deviation across the outputs of the orientation channels.

This normalization by anisotropy model applies greater normalization when the contrast

energy is concentrated in a single orientation channel, resulting in a lower response for grat-

ings. There is no explicit representation of centers, surrounds, or feature matching in the nor-

malization pool. This implementation is consistent with the idea that responses are reduced by

the amount of redundancy in the image.

The normalization by anisotropy model exhibits similar predictions to the orientation-

tuned normalization model, capturing the larger response to the snakes (Fig 6). Both models

predict that the responses to snakes are about double the responses to gratings, similar to the

data. It also predicts a higher slope for the snakes than the gratings, both as a function of den-

sity and contrast. The success of these models validates the idea that normalization depends on

how contrast energy is distributed across orientations, not just on the overall contrast energy.

2.6. The two normalization models that are sensitive to orientation

accurately predict responses to a wide range of stimuli

Both models without orientation sensitivity fail to account for the higher responses to snakes

than gratings (Fig 7), and have low variance explained (Fig 8). Models that include orientation

sensitivity capture the higher responses to snakes (Fig 7), and fit the data accurately (Fig 8).

This suggests that sensitivity to orientation should be incorporated into normalization models

of visual cortex. The accuracy differences across models are not due to the number of free

parameters: the untuned normalization model has the same number of free parameters (three)

as the tuned normalization model and the anisotropy model. Moreover, the prediction accu-

racy was computed using cross-validation, so that having more parameters does not necessar-

ily lead to better predictions. The tuned normalization model has a numerically higher

accuracy than the anisotropy model for nearly all data sets in all conditions (S3 Appendix),

but the advantage of the two models with orientation sensitivity dwarfs the slight difference

between these two models. Interestingly, for the two untuned models, prediction accuracy

declines from V1 to V2 to V3, whereas for the two tuned models, accuracy increases (target sti-

muli) or stays flat (all stimuli) from V1 to V2/V3 (black lines in Fig 8).This pattern is consis-

tent with the notion that along the visual hierarchy, neural responses become increasingly
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sensitive to statistical regularities, such as similarity in features across the image (see Discus-

sion section 3.4).

Because the two orientation-sensitive model were motivated by the need to explain the

greater response to snakes than gratings, it is important to test the models on other stimuli as

well. We refit all 4 models to the full data sets, which consisted of 50 (data set 1), 48 (data set 2)

and 39 (data set 3, data set 4) stimuli, spanning a variety of texture types. In addition to the

snakes and gratings, there are textures we refer to as noise bars, waves, plaids, and circular (S2

Appendix and Table C in S1 Appendix).
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Fig 6. The normalization by orientation anisotropy model also accounts for the responses in V1-V3. (A) Schematic of the normalization by orientation

anisotropy model. (B) The mean fMRI responses from V1, V2, and V3 are replotted from Fig 3. The red dots are the cross-validated predictions from the

normalization by orientation anisotropy model. Data and model fits plotted from the function s4_visualize(’figure 6’) in the code repository. See Fig A1 in S5

Appendix for fits to all 4 data sets.

https://doi.org/10.1371/journal.pcbi.1011704.g006
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Just as with the target stimuli, across the full sets of stimuli, the tuned normalization

model and the anisotropy model made accurate predictions, explaining 63%-77% and 49%-

66% of the cross-validated variance in V1-V3 for the example data set (Fig 9). These two

models also provide good fits to the other three data sets, shown in S5 Appendix. The fits to

the larger stimulus sets, like the fits to the target stimuli alone, capture the observation

about the two stimulus classes, meaning a larger predicted response for snakes than grat-

ings. The two models also accurately predict lower responses to waves (one dominant orien-

tation) than noise bars (many orientations). The two models also predict increasing

response amplitudes from gratings (one orientation) to plaids (two orientations) to circular

(16 orientations), as evident in stimulus sets 3 and 4 (Figs D3-D4 and E3-E4 in S5 Appen-

dix). This pattern of predictions matches the data. The untuned models do not differ in

their predictions for these three stimulus categories.

Across ROIs and data sets, the orientation-tuned normalization model accounts for the

highest variance, with R2 ranging from 55% to 77% (Fig 8, bottom; S3 Appendix, the third

row). The anisotropy model ranks second in all cases, substantially outperforming the two

baseline models. Similar to the pattern with the target stimuli, when fitting to all stimuli the

two untuned models show substantially decreasing accuracy from V1 to V2 to V3. The

tuned normalization model and the anisotropy model decrease only slightly in accuracy

from V1 to V2 to V3, meaning that the advantage for the tuned models is largest in extra-

striate areas.
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Fig 7. The orientation dependent models account for the higher responses to snakes than gratings. For each visual area,

V1-V3, we averaged the response to snakes and to gratings across stimuli in the target set and across the 4 data sets to

compute the ratio of snakes to gratings: mean(snakes) / mean(gratings). We computed this value for each data set and

plotted the average and standard error across the four data sets. In the data, the response to snakes is about double to

gratings. This is matched in the two normalization models that are sensitive to orientation, but not the other models. Data

and model fits plotted from the function s4_visualize(’figure 7’) in the code repository. CE = contrast energy; DN = untuned

normalization; OTN = orientation-tuned normalization; NOA = normalization by anisotropy.

https://doi.org/10.1371/journal.pcbi.1011704.g007
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https://doi.org/10.1371/journal.pcbi.1011704.g008
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3. Discussion

3.1 Why do some models fail to account for the much larger response to

snakes?

We began with the observation that the BOLD response is about twice as large for patterns

with curved contours (snakes) as for similar stimuli with straight, parallel contours (gratings).
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https://doi.org/10.1371/journal.pcbi.1011704.g009
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The difference in the responses is not a peculiarity of the BOLD signal, as a similar pattern was

also observed in human intracranial measures of the field potential (broadband power from

ECoG electrodes). The contrast energy model without normalization and the contrast energy

model with untuned normalization did not predict large differences between the responses to

the two stimulus classes. Both models pool contrast energy over space and orientation without

an orientation-specific normalization or other orientation specific non-linearity. If two images

have the same total contrast energy, then the way the energy is distributed across orientation

channels will not matter, either for the measure of total energy (contrast energy model) or for

the amount of normalization (untuned normalization model).

The implementation of the orientation-tuned normalization model was motivated in part

from electrophysiology results showing that in V1, surround suppressive fields tend to be

tuned to orientations close to the RF center’s preferred orientation [35]. Psychophysical exper-

iments also show interactions between a target and surround that depend on matched orienta-

tion [e.g., 42]. While there is a lot of evidence from electrophysiology, fMRI, and

psychophysics in support of feature tuning in normalization, here we explicitly compared

image-computable models with and without feature-tuned normalization. Implementing the

model and fitting it to data enabled us to assess whether (1) it quantitatively accounts for two-

fold difference in response to snakes vs gratings (2) whether it also provides good fits to a wide

range of other stimuli that it was not explicitly implemented for and (3) whether it can capture

other more subtle effects, like the difference in the slope of the contrast response function

between snakes and gratings. In all three cases, the answer was yes. We also implemented a sec-

ond model with tuned normalization (the normalization by orientation anisotropy model),

and this model also provided an affirmative answer to these questions, confirming the impor-

tance of including orientation dependence in the normalization computation. We discuss sim-

ilarities (3.2) and differences (3.3) between the two models below.

3.2 Model behavior: Models with orientation dependent normalization

capture the differences in both mean and in slope between snakes and

gratings

The two models with orientation dependent normalization predict larger outputs, on average,
for snakes than gratings, even when the contrast energy of the stimuli is approximately

matched. This is due to how the normalization is computed. The grating stimuli elicit large

outputs in the orientation channels that are matched to the stimulus, moderate outputs in

adjacent orientation channels, and little to no response in other channels. As a result, there is

high anisotropy (standard deviation across channel outputs), resulting in more suppression in

the normalization by orientation anisotropy model. There is also high suppression from the

surround in the orientation-tuned normalization model. The two models were implemented

to capture the difference in mean between the two stimulus classes, so perhaps it is not so sur-

prising that they do so.

The two models, unlike the contrast energy model and the untuned normalization model,

also accurately predict steeper slopes for snakes than gratings (with respect to both contrast and

density), a pattern that the models were not explicitly motivated to capture. They predict the

difference in slope because at low total contrast energy for the image, there is little normaliza-

tion, and hence the response to a snake and a grating stimulus will be comparable. This expla-

nation applies to both low contrast stimuli and low-density stimuli, because in both cases the

summed contrast energy is low, meaning the normalization term in the denominator is small.

Hence, little normalization at low contrast is expected from the model, and is also confirmed

by empirical measures of spatial summation and surround suppression at different contrast

PLOS COMPUTATIONAL BIOLOGY Normalization by orientation-tuned surround in human V1-V3

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011704 December 27, 2023 15 / 33

https://doi.org/10.1371/journal.pcbi.1011704


levels [49,50]. The more nuanced prediction from these models is that for stimuli with high

total contrast energy (high stimulus contrast and high density), there is a lot of normalization

for gratings and much less for snakes, resulting in a more pronounced difference in predicted

response. The difference in predicted responses at high contrast but not at low contrast causes

a difference in slope. For the two untuned models, normalization increases with contrast

energy, but it increases similarly for the snakes and gratings, hence predicting similar slopes.

Interestingly, the data and the two models with orientation dependent normalization also

show a greater slope for “noise bar” stimuli than “waves” (Figs B3-B4 and C3-C4 in S5 Appen-

dix). The noise bars, like the snakes, have many orientations in first order contrast (but unlike

the snakes, have only one dominant orientation for second-order contrast). The waves are the

complement, with one dominant orientation for first order contrast (like gratings) but many

orientations for second-order contrast. The pattern in the data and model predictions is that

the stimuli with many orientations (noise bars) increase more steeply as a function of contrast

than the stimuli with a narrower range of orientations (waves), supporting the observations

made with snakes and gratings, but adding the further nuance that what seems to matter most

is the orientation distribution (wide vs narrow) for first order rather than second-order

contrast.

The difference in slopes between snakes and gratings in the data is related to, but not identi-

cal to, results observed for single unit V1 cells. For a typical V1 cell, the contrast response func-

tion has a higher slope for preferred than for non-preferred stimuli [51–53], a pattern also

predicted by normalization models [7]. The pattern is predicted because of the difference in the

numerator, which is high for preferred stimuli and low for non-preferred. The denominator is

about the same for the two stimuli, proportional to the total contrast energy in the stimulus. We

attribute the difference in slope between snakes vs gratings to a difference in the denominator of

the normalization equation, which is high for gratings, low for snakes. The numerator is about

the same for the two classes, proportional to the total contrast energy. In both cases–single unit

responses to non-preferred stimuli, and population responses to grating stimuli–the reduced

slope is due to a large amount of normalization relative to the driven response.

3.3 What is the tuning in orientation-tuned normalization?

We implemented two models with orientation dependent normalization. Both capture the

same tendency for more normalization for homogeneous stimuli like gratings. They differ in

implementation, however. The tuned normalization model differs only slightly from more typ-

ical normalization models: the only difference is that the normalization weights happen to con-

form to a specific pattern, such that cells with similar feature tuning (here, orientation) with

nearby receptive fields have high weights, and cells with different feature tuning have low

weights. As a result, surround suppression is most effective according to this model when the

orientation of a surrounding region is matched to the preferred orientation of a cell. This is

justified by findings from single unit data in macaque V1 that

“the surround influence was always suppressive when the surround grating was at the neu-

ron’s preferred orientation” [35].

The normalization by orientation anisotropy model is a larger departure from the standard

normalization model, since the computation of anisotropy is not a simple weighting of the out-

puts of nearby cells. Unlike the tuned normalization model, it has the greatest suppressive

effect when the features of a stimulus are anisotropic (like a grating) irrespective of whether

the stimulus orientation matches the center tuning of a cell. Interestingly, there is also empiri-

cal support for this pattern from the same study by Cavanaugh et al., 2002 [35]: specifically,

evidence for “the tuning of the surround being dependent to some degree on the stimulus
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used in the center—suppression was often stronger for a given center stimulus when the

parameters of the surround grating matched the parameters of the center grating even when

the center grating was not itself of the optimal direction or orientation.” This pattern has been

found in multiple studies, indicating that for macaque and cat V1 cells, surround suppression

is often maximal when the surround and center stimulus orientation match, independent of

the orientation preference of the cell [37,54,55]. Put another way, the tuning of the surround

changes as the center orientation or direction changes. As shown by simulation, our normali-

zation by anisotropy model can capture this observation from single units, but our tuned nor-

malization model cannot (Fig 10). In this regard, the Normalization by orientation anisotropy

model is more like Coen-Cagli et al’s [22] model of single-cell data than is the Orientation-

tuned surround model model.

The two models we implemented leave us in an unusual position. We have one model that

has slightly higher prediction accuracy and is more in line with standard normalization models

(orientation-tuned normalization), and a second model with slightly lower (but still high) pre-

diction accuracy, but a closer fit to some data from single units (normalization by orientation

anisotropy). The simplest conclusion is that a contrast energy model incorporating some form
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in panel B. Here, the greatest suppression is when the surround orientation matches the center orientation, similar to the single unit data. Data and simulations
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https://doi.org/10.1371/journal.pcbi.1011704.g010
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of orientation-dependent normalization greatly outperforms models that do not have tuned

normalization. Given the diversity of cells in visual cortex, it is not likely that a single, simpli-

fied model will be sufficient to capture the behavior of all cells or cell populations for all sti-

muli. A neural network model with recurrence, temporal dynamics, and with feedforward,

feedback and lateral connections might provide insight into the specific ways in which the sur-

round modulation emerges [54,56], particularly given evidence that normalization changes as

the response to a stimuli unfolds [57–60].

Interestingly, the denominator in the normalization by anisotropy model (the normalizer)

is almost the same as the numerator of an orientation variance model used to predict the

amplitude of gamma oscillations measured with ECoG electrodes in human subjects [13]. The

fact that the same term is used in the numerator to predict gamma oscillations and the denom-

inator to predict BOLD is consistent with the empirical observation that many of the stimuli

that are most effective for driving large gamma oscillations (high contrast luminance gratings)

are relatively ineffective for eliciting BOLD signals [61,62], and multiunit action potentials

[63,64]. The link may be that gamma oscillations, rather than being the fundamental mecha-

nism for perception and long-range cortical communication [65,66], are rather a result of the

normalization process [13,67]. An open question is whether gamma oscillations might be pre-

dicted as accurately, or perhaps more accurately, by the normalization pool used in our orien-

tation-tuned normalization model than the normalization pool of the normalization by

anisotropy model.

3.4 Orientation dependent normalization and image statistics

The normalization by orientation anisotropy model and the orientation-tuned model showed

larger advantages over untuned models for V2 and V3 compared to V1. This pattern is consis-

tent with findings from electrophysiology and computational modeling of behavior. First, evi-

dence from the non-human primate visual system suggests that the orientation tuning of

surround suppression in V1 arises in large part from feedback from extrastriate areas, espe-

cially for the more spatially distant effects of surround suppression [55,68,69]. If the tuned sup-

pressive effects depend on computations in extrastriate regions, then these regions may also

exhibit more tuned suppression than V1.

More generally, tuned suppression, either in the form of our tuned normalization model or

the anisotropy model, reflects sensitivity to higher-order image statistics (correlations over

space between filter outputs). Models of extrastriate neural responses, especially V2, also tend

to be more sensitive to higher-order image statistics than to contrast energy per se, such as

models based explicitly on texture statistics [28–30,70,71], or models with multiple subunits

that may exhibit heterogenous feature tuning [72–74].

We consider one specific way that our normalization by anisotropy model might be linked

to the V2 models proposed by Simoncelli and colleagues. Suppose the V1 population computes

contrast energy localized in orientation and space. (For simplicity, we ignore spatial frequency,

as we did here experimentally by band-pass filtering our stimuli.) We then suppose that the V2

cells compute various weighted sums of the V1 outputs. Specifically, we assume that, for each

spatial location, the weights among V2 cells form a Fourier basis set on the V1 outputs (across

orientation). If these weights are arranged in pairs (similar to the odd and even V1 filters), and

the outputs are squared and summed across phase (similar to the V1 energy model), then then

the summed V2 population output will be proportional to the variance in the V1 response

across orientation (David Heeger, personal communication). If this population output is the

normalization pool for V2, then we get a normalization term like that in the anisotropy model,

which normalizes by the standard deviation across orientation channels. A V2 model based on
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these principles would also need a similar term in the numerator, which we do not include.

Hence the link is only to the denominator of the model.

3.5 Are typical contrast energy V1 models missing something important?

No model is complete. The standard normalized contrast energy model of V1, when fit with

appropriate parameters, can capture substantial variance in V1 responses [75], but not all. Our

results indicate that the model fails for at least some relatively simple stimulus classes, and that

the failure can be large. But whether a more complex model is needed, such as a gated normali-

zation model [22] or either of the orientation dependent normalization models we imple-

mented, will depend on the stimulus set tested and the purpose of modeling. It is reasonably

likely that the computations in both the anisotropy and the tuned normalization models are

more connected to computations in extrastriate visual maps than in V1, but may also influence

the response in V1 via feedback. [55,76].

More generally, since the development of divisive normalization models in the early 1990s,

there has not yet been a generally agreed-upon description of exactly which cell populations

contribute to normalization, and with what weights. Some attempts have been made, by

assuming efficient coding of natural images [46,77] or by fitting model parameters to neural

data [78]. And while there is a large literature on divisive normalization, including its tuning,

many issues remain unresolved, including whether normalization within receptive field cen-

ters is orientation-tuned (in addition to the extra-classical surround being orientation-tuned)

[78]. In this sense, a standard model of V1, with parameters set, that is downloadable and exe-

cutable on arbitrary input images, does not yet really exist.

Both the anisotropy model and the tuned normalization model we presented make some

advance but also have some important limits, most notably the lack of spatial receptive fields,

as well as a lack of sensitivity to second-order contrast. Hence, they do not supersede other

models, but rather provide compact computational summaries of response patterns that are

not well captured by other models. Integrating better computational tools for validation [79],

model-based stimulus development [80,81], high-quality standardized data sets [82], and the-

ory [83], may offer the best path toward more complete understanding of neural circuits in

visual cortex.

4. Methods

4.1 Ethics statement

Participants provided written informed consent. The experimental protocol was in compliance

with the safety guidelines for MRI research and was approved by the University Committee on

Activities involving Human Subjects at New York University (IRB-FY2016-363).

We analyzed and modeled four fMRI data sets for this paper. Data sets 1 and 2 were col-

lected at NYU. Data sets 3 and 4 are re-analyzed from a previous paper [11], for which the

fMRI data and stimuli are freely available online (http://kendrickkay.net/socmodel/).

4.2 Participants

The two NYU participants were both experienced MRI subjects (female; 24, 29 yo). Data were

collected at NYU’s Center for Brain Imaging. The experimental protocol was approved by the

University Committee on Activities Involving Human Subjects, and informed written consent

was obtained from the participants before the study. Both participants had corrected-to-nor-

mal vision. The subjects participated in two separate scanning sessions, one for retinotopic

mapping and one for the main study on encoding of textures.
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4.3 Stimuli

Publicly accessible links to the stimuli, the names of the stimulus classes, and the correspon-

dence between our naming convention and those in the Kay et al., 2013 [11] paper are

described in Tables A, B, and C in S1 Appendix. The total spectral power of all images can be

visualized using function visualizeStimulusPowerSpectrum in the code repository and is shown

for target stimuli from Dataset 2 of Fig A in S1 Appendix.

4.3.1 Stimuli for data sets 3 and 4. Data sets 3 and 4 correspond to subject 1 and subject

2, respectively, in Kay et al., 2013 [11]. The stimuli for the two subjects were the same and are

referred to as “Stimulus set 2” on the website (http://kendrickkay.net/socmodel/). The publicly

available stimulus set includes 156 stimuli, 39 of which were used for this paper (Tables B and

C in S1 Appendix). The reason we use only a subset of the stimuli is that we modeled how

visual areas respond to textures ignoring retinotopic preference, and many of the stimuli used

in the original paper varied systematically over space in order to map spatial receptive fields.

We used only the large-field textures, i.e., the subset of stimuli whose patterns were similar

across the whole circular aperture.

The 39 stimuli are organized into 7 groups, each of which we describe with two terms, one

term for the type of texture and one term for the way in which the stimuli within the group

vary. For example, GRATINGS (contrast) are stimuli which come from the grating family and

vary from low to high contrast. GRATINGS (density) stimuli come from the same family but

have uniform contrast and vary in the spacing between the contours. The correspondence

between how we refer to the stimuli and how Kay et al., 2013 [11] referred to them is in

Table C in S1 Appendix. Below we describe the general stimulus characteristics and the 7 spe-

cific classes used for this paper. Most of the text is duplicated from Kay et al., 2013 [11] (p. 11),

indicated by italics.

General stimulus characteristics. Stimuli were constructed at a resolution of 256 pixels × 256
pixels and were upsampled to 800 pixels × 800 pixels for display purposes. All stimuli were pre-
sented within a circular aperture filling the height of the display; the rest of the display was filled
with neutral gray. The outer 0.5 deg of the circular aperture was smoothly blended into the back-
ground using a half-cosine function.

Stimuli consisted of grayscale images restricted to a band-pass range of spatial frequencies cen-
tered at 3 cycles per degree. To enforce this restriction, a custom band-pass filter was used in the
generation of some of the stimuli. The filter was a zero-mean isotropic 2D Difference-of-Gaus-
sians filter whose amplitude spectrum peaks at 3 cycles per degree and drops to half-maximum at
1.4 and 4.7 cycles per degree. Restricting the spatial frequency content of the stimuli avoids the
complications of building multiscale models and helps constrain the scope of the modeling
endeavor. Even with the spatial frequency restriction, it is possible to construct a rich diversity of
stimuli including objects and other naturalistic stimuli. . .. Each stimulus consisted of nine dis-
tinct images that were presented in quick succession. The purpose of this design was to take
advantage of the slow dynamics of the BOLD response and average over stimulus dimensions of
no interest (e.g., using sinusoidal gratings differing in phase to average over phase).

A key motivating observation for this paper is that the response to gratings was lower than

to curved stimuli. Four groups of stimuli, two groups of gratings and two groups of snakes,

were studied first and are referred to throughout the paper as target stimuli. These are

described first.

Target stimuli. SNAKES (contrast, 10 stimuli). Kay et al. refers to these stimuli as noise

patterns: Noise patterns were created by low-pass filtering white noise at a cutoff frequency of 0.5
cycles per degree, thresholding the result, performing edge detection using derivative filters,
inverting image polarity such that edges are black, and applying the custom band-pass filter
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(described previously).We generated nine distinct noise patterns and scaled the contrast of the
patterns to fill the full luminance range. [The contrast stimuli were then] constructed by varying
the contrast of the noise patterns. . . . Ten different contrast levels were used: 1%, 2%, 3%, 4%,

6%, 9%, 14%, 21%, 32%, and 50%. These contrast levels are relative to the contrast of the patterns
used in SPACE [not used in this study], which is taken to be 100%.

SNAKES (density, 5 stimuli). These stimuli used the same type of noise patterns as SPACE
[not used here] but varied the amount of separation between contours.We generated noise pat-
terns using cutoff frequencies of 2.8, 1.6, 0.9, 0.5, and 0.3 cycles per degree, and numbered these
from 1 (smallest separation) to 5 (largest separation). The noise patterns used in SPACE corre-
spond to separation 4; thus, we only constructed stimuli for the remaining separations 1, 2, 3,

and 5. The noise patterns occupied the full stimulus extent (no aperture masking)
GRATINGS (contrast, 4 stimuli). These stimuli consisted of horizontal sinusoidal gratings at

2%, 4%, 9%, and 20%Michelson contrast. The spatial frequency of the gratings was fixed at 3
cycles per degree.

GRATINGS (density, 5 stimuli). The highest density stimulus in this group is similar to the

horizontally oriented stimulus in GRATINGS (orientation), i.e., similar to a horizontal high-con-

trast grating, but it is not precisely a sinusoidal grating. It is made by convolving equally spaced

horizontal lines with the custom band-pass filter (described previously). When the gratings are

spaced appropriately (⅓ deg spacing) and filtered by a band-pass filter centered at 3 cycles per

deg, the result is close to a sinusoidal grating at 3 cycles per deg. When the spacing is larger, there

are several parallel band-pass contours with uniform gray between them. The spacing between

parallel lines for the 5 stimuli varied in powers of 2, as 1/3 deg × 1,2,4,8, or 16, from densest to

sparsest. Because the grating and snakes stimuli were both constructed by convolving lines with

the same band-pass filter, they have some similar properties. They differ in that the lines here

were straight whereas the lines used for constructing the snakes stimuli were curved.

Additional stimuli. GRATINGS (orientation, 8 stimuli). These stimuli consisted of full-
contrast sinusoidal gratings at eight different orientations. The spatial frequency of the gratings
was fixed at 3 cycles per degree. Each [of the 9 exemplars per stimulus] consisted of gratings with
the same orientation but nine different phases (equally spaced from 0 to 2π).

PLAID (contrast, 4 stimuli). These stimuli consisted of plaids at 2%, 4%, 9%, and 20% con-
trast (defined below). Each condition comprised nine plaids, and each plaid was constructed as
the sum of a horizontal and a vertical sinusoidal grating (spatial frequency 3 cycles per degree,
random phase). The plaids were scaled in contrast to match the root-mean-square (RMS) con-
trast of the GRATING stimuli. For example, the plaids in the 9% condition were scaled such that
the average RMS contrast of the plaids is identical to the average RMS contrast of the gratings in
the 9% GRATING stimulus.

CIRCULAR (contrast, 4 stimuli). These stimuli were identical to the PLAID stimuli except
that sixteen different orientations were used instead of two.

4.3.2 Stimuli for Data set 1. Data set 1 was collected at NYU. The data set was designed

to replicate some of the effects observed from data sets 3 and 4 (the greater response to snakes

than gratings), but also to extend the measurements to new stimulus classes. The general stim-

ulus characteristics were the same as those used in data sets 3 and 4. However, because the dis-

play size differed, the image resolution in pixels also differed (400 × 400 here, vs 800 × 800

above), and there were slight differences in the bandpass filter. The stimulus size in degrees of

visual angle was the same (12.5 deg diameter). A total of 50 stimuli were tested. (The numbers

below total more than 50 because some stimuli belong to more than one group, as indicated in

Table C in S1 Appendix).

Target stimuli. GRATINGS (contrast, 5 stimuli). These stimuli are horizontal gratings

(but not quite sinusoids), with a similar spatial pattern to the middle stimulus in the
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GRATINGS (density) stimuli from data sets 3 and 4. They were made by convolving horizon-

tal lines spaced every 1.75 deg with a custom band-pass filter. The images were scaled to yield

5 different contrasts of 3%, 10%, 25%, 50% and 100%.

GRATINGS (density; 5 stimuli). These stimuli are similar to horizontal gratings, made by

convolving equally spaced horizontal lines with the custom band-pass filter. The 5 stimuli dif-

fered in the spacing of the horizontal lines, spaced every 3, 2.5, 1.75, 1, 0.33 deg. The contrast

of all stimuli was 25%. The middle stimulus in this sequence was the same as the middle stimu-

lus in the contrast sequence (spacing 1.75 deg, 25% contrast). The highest density (0.33 deg

spacing) is close to a sinusoidal grating, as the spacing is the inverse of the peak spatial fre-

quency of the band-pass filter (3 cycles per degree).

SNAKES (contrast, 5 stimuli). The spatial pattern is similar to the snakes stimuli in data set

3 and data set 4. Contrasts matched the grating contrasts (3%, 10%, 25%, 50% and 100%).

SNAKES (density, 5 stimuli). The spatial pattern is similar to the snakes stimuli in data set 3

and data set 4, but with 5 different densities of the contours. The contrast for all stimuli was

25% (lower than the contrast of the corresponding stimuli in data set 3 and data set 4). The

range of densities used here was also lower than the range used in data set 3 and data set 4,

with the densest pattern here similar to the middle stimuli in data set 3 and data set 4.

Additional stimuli. GRATINGS (orientation, 4 stimuli). These stimuli are the same as

the third stimulus in the GRATINGS (density) group (25% contrast, 1.75 deg spacing between

contours), except that they are rotated by 0, 45, 90, or 135 deg. Because the 0 deg rotation does

not change the image, a new stimulus was not created; for visualization of results, the BOLD

measurements and model predictions are plotted for both groups.

GRATINGS (cross, 4 stimuli). These stimuli contain horizontal contours similar to two of

the stimuli in the GRATINGS (density) sequence, except that they have periodic vertical blank

regions which interrupt the contours. For two of the stimuli, the spacing of the horizontal con-

tours matches the densest stimuli in the density sequence (spacing of 0.33 deg) and for two of

the stimuli, the spacing matched the middle stimulus in the density sequence (1.75 deg spac-

ing). In all 4 images, the horizontal contours are interrupted by vertical blanks spaced every

1.75 deg. The vertical blanks are either thick (50% duty cycle; 1st and 3rd stimulus) or thin

(25% duty cycle; 2nd and 4th stimuli).

NOISE BARS (density, 5 stimuli). These stimuli have the same contrast apertures as the

GRATINGS (density) stimuli. Specifically, there are horizontal bands containing contrast pat-

terns, spaced the same as the grating stimuli (bands every 3, 2.5, 1.75, 1, or 0.33 deg). These sti-

muli differ from the gratings in that each band contains band-pass filtered noise, equal in

power across orientations, rather than horizontal contours.

NOISE BARS (contrast, 5 stimuli). These stimuli are matched in spatial pattern to the mid-

dle density of the NOISE BARS (density) stimuli (horizontal lines, spacing 1.75 deg), but scaled

in contrast similar to the grating stimuli (3%, 10%, 25%, 50%, 100%).

NOISE BARS (orientation, 4 stimuli). The orientation sequence rotated the middle stimulus

of the NOISE BARS (density) group (spacing 1.75 deg, contrast 25%) by 0, 45, 90, or 135 deg.

WAVES (density, 6 stimuli). These are identical to the snakes (density) stimuli, except that

they have been filtered by orientation, such that they only contain power at or near the

horizontal.

WAVES (contrast, 5 stimuli). These are identical to the snakes (contrast) stimuli, except

that they have been filtered by orientation, such that they only contain power at or near the

horizontal.

WAVES (orientation, 4 stimuli). These are identical to the densest stimulus in the snakes

(density) group, except that they have been filtered by orientation, with filter centered at either

0, 45, 90, or 135 deg.
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4.3.3 Stimuli for data set 2. Data set 2 was collected at NYU. The stimuli were nearly

identical to those in data set 1, differing only in the following ways. First, the stimuli were 50%

larger (18.75 × 18.75 deg and 600 × 600 pixels, rather than 12.5 × 12.5 deg and 400 × 400 pix-

els). The difference in size did not entail a difference in spatial frequency: The spatial frequency

was matched between the two data sets (meaning that the stimuli were re-made with a larger

aperture rather than by re-scaling). Second, those stimuli which were oriented were oriented

vertically rather than horizontally. This applies to all GRATING stimuli, as well as NOISE

BARS and WAVES. Third, the WAVES (density) stimuli had only 4 densities rather than 6.

We reduced the number of stimuli to slightly shorten the MRI scans.

4.4 MRI

The methods for MRI acquisition and preprocessing for data sets 3 and 4 are described in Kay

et al., 2013 [11]. In brief, each data set comes from one subject, who viewed a variety of stimuli

in an event-related fMRI design. Data set 3 was collected over two scan sessions and each stim-

ulus was presented 6 times. Data set 4 was collected over one scan session and each stimulus

was presented 3 times. (Note that both in this paper and the Kay website (http://kendrickkay.

net/socmodel/), these two data sets are referred to as data sets 3 and 4. However, the Kay web-

site refers to the stimuli for these two data sets as stimulus set 2 and the subjects themselves as

“subject B” and “subject C”. We do not adopt these latter two conventions.)

After preprocessing the data (slice-time correction, co-registration, spatial unwarping), a

general linear model was applied using the GLMdenoise toolbox [11]. The output of this algo-

rithm includes a coefficient (beta weight) for each stimulus for each voxel solved from the

whole fMRI session, as well as 30 bootstrapped estimates of each beta weight (bootstrapping

across fMRI runs). The publicly available data (http://kendrickkay.net/socmodel/) are already

pre-processed, denoised, and organized by ROI. Specifically, the data we used are in the files

called “data set03.mat” and “data set04.mat” (http://kendrickkay.net/socmodel/data set03.mat,

http://kendrickkay.net/socmodel/data set04.mat). The data sets are described on the website as

“Data set 3 (subject B)” and “Data set 4 (subject C),” respectively. Within the MATLAB files,

we used the stored 3D array called “betas” (voxels × stimuli × bootstraps), limited to V1, V2,

V3 as indicated in the grouping variables “roi” and “roilabels”, and limited to the 39 stimuli

indicated in Table B in S1 Appendix. Visual areas were identified by retinotopic mapping in a

separate session.

4.4.1 Acquisition of data sets 1 and 2. Data sets 1 and 2 were acquired in one scanning

session each. Each scanning session had 12 fMRI runs of 249 s each (data set 1) or 241.5 s each

(data set 2). For each data set, half of the stimuli were assigned to odd fMRI runs and half to

even runs, so that each stimulus was shown 6 times in the session. The stimulus events were 3 s

long, consisting of 9 alternations between stimulus exemplar and blank, ⅙ s each. Trial onsets

were every 7.5 s (so 4.5 s blank between trials). To help estimate the hemodynamic response

function, there were 12 s of blank at the beginning and end of each run, as well as 5 additional

trials randomly interspersed with no stimulus (meaning that 5 times during the scan, trials

were separated by 15 s instead of 7.5 s). Thus, each complete run consisted of either (25 stimuli

+ 5 blanks) * 7.5 s + 24 s = 249 s (data set 1) or (24 stimuli + 5 blanks) * 7.5 s + 24 s = 241.5 s

(data set 2).

All MRI data were acquired at New York University Center for Brain Imaging using a Sie-

mens Allegra 3T head-only scanner with a Nova Medical phased array, 8-channel receive sur-

face coil (NMSC072). For each participant, we collected functional images (single shot echo

planar images, 1500 ms TR, 30 ms TE, and 72˚ flip angle). Voxels were 2.0 mm3 isotropic, with

24 slices, with an inplane sampling of 104 × 80 voxels (208 mm A/P × 160 mm L/R). The slice
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prescription covered most of the occipital lobe, and the posterior part of both the temporal

and parietal lobes. Images were corrected for B0 field inhomogeneity using a calibration scan

and Center for Brain Imaging algorithms during offline image reconstruction.

We also acquired 1 or 2 T1-weighted whole-brain anatomical scans (MPRAGE sequence;

1mm3), as well as a T1-weighted “inplane” image with the same slice prescription as the func-

tional scans. This scan had an inplane resolution of 1.25 × 1.25 mm and a slice thickness of 2.5

mm, and was collected to aid alignment of the functional images to the high-resolution T1

weighted anatomical images.

In a separate session, retinotopy scans were collected and analyzed using a pRF model as

implemented in the Vistasoft software tool (https://github.com/vistalab/vistasoft). The methods

for acquisition and analysis of the retinotopy data are identical to that described by Zhou et al.

2018 [84].

4.4.2 Data preprocessing and analysis. Data preprocessing. Processing of the fMRI data

was identical to that described by Zhou et al. 2018 [84]:

We coregistered and segmented the T1 weighted whole-brain anatomical images into gray
and white matter voxels using FreeSurfer’s autosegmentation algorithm (http://surfer.nmr.
mgh.harvard.edu). Using custom software Vistasoft (https://github.com/vistalab/vistasoft),
the functional data were slice-time corrected by resampling the time series in each slice to the
center of each 1.5 s volume. Data were then motion-corrected by coregistering all volumes of
all scans to the first volume of the first scan. The first 8 volumes (12 s) of each scan were dis-
carded for analysis to allow longitudinal magnetization and stabilized hemodynamic
response.

GLM. The preprocessed fMRI data were then fit by a general linear model, GLMDenoise

[11]. This algorithm denoises the data by projecting out nuisance regressors derived in a data-

driven manner, and estimates coefficients for each of the 48 or 50 stimuli for each voxel in the

functional images. The algorithm bootstraps the data over fMRI runs. For data sets 1 and 2, we

generated 50 bootstraps for data set 1 and 100 bootstraps for data set 2. The publicly available

data from Kay et al, 2013 [11], included 30 bootstraps per subject. The algorithm also esti-

mated a hemodynamic impulse response function as a finite impulse response function, with

35 time points (52.5 s) per subject.

ROIs. Regions of interest for V1, V2, V3 were delineated manually using the Vistasoft

(https://github.com/vistalab/vistasoft) graphical user interface to visualize the results of the

pRF models. These methods for identifying these boundaries are well established, as described

in many publications [85,86, summarized by 87]. The ROIs for V1, V2 and V3 were identified

on the cortical surface and then projected to the functional images. For purposes of data sum-

mary and model fitting, we took the average signal from each ROI. We did this by averaging

the beta weight across voxels within an ROI separately for each stimulus, after voxel selection

(Table A in S1 Appendix). Because noise can be correlated across voxels, but should not be

correlated across scans, when we bootstrapped the data, we average across voxels within an

ROI for each bootstrap. For the purposes of model fitting, each of the 4 data sets comprised

two matrices, one for the means and one for the standard deviation across bootstraps, each of

which had a size equal to the number of stimuli by number of ROIs.

4.5 Model equations

In the Results, we compared the accuracy of four models fit to the data, three of which are

based on existing models or empirical findings–a contrast energy model, a untuned
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normalization model, and an orientation-tuned normalization model–and one new model,

which computes normalization by orientation anisotropy. In this section we describe the com-

putation that comprises each model.

All four models consist of three primary steps: (1) computation of oriented contrast energy,

(2) pooling across orientation and space, and (3) a power-law nonlinearity. Steps 1 and 3 are

identical for all models. Step 2, spatial pooling, varies between models.

1. Contrast energy: We denote by I(x,y) the value of the pre-processed input image at coor-

dinates (x,y). The pre-processing causes the image values to have mean 0 and range from -0.5

to 0.5. The image is projected onto a set of 128 Gabor filters, which comprise 8 orientations θ,

spaced every 22.5 deg; 8 spatial frequencies f, with peak spatial frequency log spaced from 0.75

cpd to 6 cpd; and 2 phases ϕ, separated by 90˚ (i.e., “quadrature”). F(x,y,θ,f,ϕ) indicates the

Gabor filter at a spatial location (x,y), orientation θ, spatial frequency f, and phase ϕ. Each filter

comprised a cosine or sine function of 4 cycles, windowed by a Gaussian with SD of 1 cycle.

The outputs over the two phases are squared and summed to compute the contrast energy and

summed across spatial frequencies. Finally, the contrast energy as a function of spatial position

(x,y) and orientation θ becomes

Eðx; y; yÞ ¼
X

�;f
ð
X

x0 ;y0
Iðx � x0; y � y0ÞFðx0; y0; y; f ; �ÞÞ2 ð1Þ

We convolve the image I and the filter F. The computation of contrast energy has no free

parameters. Prior to convolution, stimuli were padded with uniform gray (mean luminance)

on all sides by the width of the largest filter. After convolution, all energy images were down-

sampled to 12 pixels per degree for computational efficiency. We note that for simplicity, we

summed over spatial frequency channels with uniform weights. If one were to fit separate

parameters for each voxel, then one might expect spatial frequency tuning to vary with eccen-

tricity. Nonetheless, the simplification of uniform weighting is reasonable given that the spatial

frequency content of our stimuli is concentrated in a single octave (~2–4 cpd), and fMRI stud-

ies of spatial frequency tuning find a wide bandwidth at the voxel level, std of 2.2 octaves, or

full width at half max of 5.1 octaves [88].

2. Spatial pooling. Each model differs in how contrast energy is pooled to yield a scalar

value, s:

s ¼ F½E� ð2Þ

where we use square brackets to indicate a function of a function (also called a functional). We

describe the pooling functional F, for each model below.

3. Power-law nonlinearity. Finally, the scalar is passed through a power-law nonlinearity to

predict the BOLD amplitude r in units of percent signal change:

r ¼ g � sa ð3Þ

Where g is the gain and α is the exponent parameter. These are free parameters fit to the

fMRI data. The power-law nonlinearity is similar to divisive normalization in the case where

each unit in a population is normalized by the same pool [10].

4.5.1 Pooling functional for contrast energy model. In the contrast energy model, the

contrast energy is summed over orientations and space to yield a scalar output, s.

s ¼
1

Nori � Npixels

X

x;y;y
Eðx; y; yÞ ð4Þ

Nori is the number of orientation channels (always 8) and Npixels is the number of pixels per

stimulus in the padded images (3442, 4192, or 3422). There are no free parameters in this
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pooling functional for contrast energy, so the complete contrast energy model has only two

free parameters, g and α, both from the power-law nonlinearity step (Eq 3).

4.5.2 Pooling functional for divisive normalization model. The contrast energy in the

untuned divisive normalization model is normalized before it is summed: Each (x,y,θ) element

in the energy image is normalized by a weighted sum of elements at (x0,y0,θ0). The weighting is

a Gaussian function of distance from location (x,y) and can thus be expressed as a convolution

of the contrast energy E, with a Gaussian, G:

Zðx; y; yÞ ¼
X

x0;y0 ;y0
Eðx � x0; y � y0; yÞGðx0; y0; y0; yÞ ð5Þ

The standard deviation of G is 4% of the padded image size, which is approximately 1 deg.

G is identical across the 8 orientations.

The normalized contrast energy is

dðx; y; yÞ ¼
Eðx; y; yÞ

sþ Zðx; y; yÞ
ð6Þ

where σ is a parameter to control the strength of normalization. When σ is large, the normali-

zation is low, and the overall expression approximates the contrast energy model. When σ
approaches 0, there is strong normalization. We then sum d across space and orientation to

result in the scalar, s.

s ¼
1

Nori � Npixels

X

x;y;y
dðx; y; yÞ ð7Þ

The pooling functional for divisive normalization introduces one free parameter, σ. As with

the contrast energy model, a power-law nonlinearity is applied to s to predict the BOLD

response in percent signal change (Eq 3). Hence the complete model has three free

parameters.

We note that the complete divisive normalization model has two similar non-linearities,

one in the pooling functional (divisive normalization) and one on the final output (power-

law). This is consistent with prior work showing that two stages of normalization (a cascade

model) improved model accuracy [11].

4.5.3 Pooling functional for orientation-tuned normalization model. We implement

the orientation-tuned normalization (OTN) model identically to the divisive normalization

model (Eqs 5–7), except that the contrast energy normalizer Z(x,y,θ) is now orientation-tuned.

When the orientation channel of the image and filter matches, θ0 = θ, the 2-D filter of the chan-

nel is a 2D Gaussian identical to the untuned normalization (4.4.2). At all other orientations

(i.e., θ0 6¼ θ), the filter is a symmetric 2D Gaussian distribution with a much small standard

deviation, effectively just one pixel (Fig 4). This is akin to summing two forms of normaliza-

tion, cross-orientation suppression (same location, other orientations), and an orientation-

tuned surround (same orientation, other locations). As with the untuned normalization

model, the pooling functional introduces only one free parameter, σ. The complete model,

including the power-law non-linearity (Eq 3) has 3 free parameters.

4.5.4 Pooling functional for normalization by orientation anisotropy. In the normali-

zation by orientation anisotropy (NOA) model, the pooling step first sums the contrast energy
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across space within an orientation band, resulting in one value per orientation band, Eori(θ):

EoriðyÞ ¼
1

Npixels

X

x;y
Eðx; y; yÞ ð8Þ

Eori indicates the oriented energy. This energy at each orientation is then normalized by the

standard deviation across the 8 orientations, and then summed to produce a scalar.

s ¼
1

Nori

X

y

EoriðyÞ

sþ StdðEoriÞ
ð9Þ

Where StdðEoriÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

y
ðEoriðyÞ �

�EoriÞ
2

q

calculates the standard deviation of the oriented

energy and a non-negative parameter w controls the strength of the normalization. When σ is

large, the normalization is low, and the overall expression approximates the contrast energy

model. When σ approaches 0, there is strong normalization by the standard deviation across

orientation channel outputs. Calculating the standard deviation of oriented energy involves a

squaring operation. To keep the parameters comparable across different models, we also

square the numerator and the parameter σ. The NOA pooling functional has one free parame-

ter, σ. The complete model, including the power-law non-linearity (Eq 3) has 3 free

parameters.

4.6 Optimization

In each model, we fitted the model free parameters using the MATLAB optimization tool

fmincon by minimizing the squared error between the model prediction and the correspond-

ing BOLD amplitude. Because each stimulus consisted of 9 exemplars shown to the subject in

rapid succession, the model prediction for each stimulus was obtained by averaging the model

predictions across the exemplars. To avoid getting stuck in the local minima of the nonconvex

landscape, we ran the optimization algorithm with 40 different parameter initializations. Each

initialized value was picked randomly. All parameters were unbounded in the search, minimiz-

ing human interference in the fitting. Parameter α is passed through a sigmoid function to

ensure its value is between 0 and 1.

4.7 Cross-validation scheme

All models were fit using an leave-one-out cross-validation scheme, where n is the number of

stimuli. Thus, the BOLD signal prediction for each stimulus was generated by a model fit to all

stimuli except that one. Under this scheme, the models are less likely to overfit data sets.

4.8 Accuracy metric

The model accuracy was quantified as the percentage of the explained variance (R2) in the

human BOLD data by the cross-validated model predictions,

R2 ¼ 1 �

PM
i¼1
ðri � r̂ iÞ

2

PM
i¼1
ðri � �rÞ2

ð10Þ

where ri represents the BOLD amplitude to the ith stimulus, r̂ i represents the corresponding

model prediction, and �r is the mean response across stimuli. We can understand this metric as

the extra uncertainty reduction brought by the model beyond describing the BOLD data by its

mean.
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